

Combine safe publication and effective immutability
to improve performance
Reduce synchronization costs in applications with infrequently modified mutable collections

Level: Intermediate

Andrew Citron (citron@us.ibm.com), Senior Programmer, IBM
Christopher R. Seekamp (seekamp@us.ibm.com), Programming Advisor, IBM
Martin Presler-Marshall (mpresler@us.ibm.com), Software Performance Analyst, IBM

02 Oct 2007

The typical way of enabling multiple threads to share access to a mutable collection — synchronizing on access to the collection — can become a
performance bottleneck. Learn a technique you can use in Java™ 5.0 and later to minimize this bottleneck for data structures that are read frequently
but updated infrequently.

A disadvantage to using data shared among multiple Java threads is that access to the data must be synchronized to avoid an inconsistent view of the contents,
which could result in application failures. For example, the Hashtable class's put() and get() methods are synchronized. Synchronization is required so
simultaneous put() and get() methods have sole access to the data when executing; otherwise, application data structures might get corrupted.

The synchronization points around those methods can become bottlenecks when an application's threads access the methods frequently enough that threads end up
blocking. Only one thread at a time gets access to the contents. The other threads must wait their turn. Performance and throughput can suffer if threads do queue
up when they could otherwise be doing useful work. In cases where performance analysis shows that the synchronized methods are in fact causing queuing points,
optimizing the code could be worth the effort.

For data that changes infrequently, a technique called generational data structures lets you use the lower overhead of volatile to publish mutable data structures
safely. When data structures are frequently accessed but infrequently modified, this can be a performance win. For example, you could use an unsynchronized data
structure such as a HashMap, rather than a synchronized one such as a Hashtable. The key to the technique is to:

1. Make a new copy of the data structure when an update is made.
2. Fully populate it.
3. Safely publish the updates to all consumers using a volatile reference.

With this technique, get and put operations never execute at the same time on the same instance of the data structure. It ensures that two threads don't try to
update the data structure at the same time and that reading threads always see a consistent, up-to-date version of the data. (The approach works even if data is
updated frequently but the performance gains achieved by improved concurrency could be lost. Frequently repopulating the data structure could offset gains that

Page 1 of 6Combine safe publication and effective immutability to improve performance

9/27/2007http://dw.raleigh.ibm.com/developerworks/library/library-html/j-hashmap.html

are achieved by avoiding synchronized accessor methods.)

The technique exploits three characteristics of the Java language:

Automatic garbage collection. When the last reference to an object has gone away, the
Java runtime can free the object automatically. No action by the application is required
other than making sure that no object references remain when the application is done
using the object. Earlier generations are automatically freed when the last client is done
with it.

Atomicity of object references. A simple assignment statement that gets access to an
object cannot be interrupted. This means that as long as the consuming thread can produce
correct results with an older (but complete) copy of the object, it is not necessary to
synchronize around a single-object assignment statement. However, it is important to note
that steps must still be taken on the producer thread to guarantee that the creation of the new object completes prior to performing the assignment. As we
explain in this article's Discussion section, synchronization is required on the producer thread to guarantee this completion prior to assignment. However,
not having to use synchronization on the consumer threads is what removes an expensive queuing point.

The Java memory model. The Java memory model specifies the semantics of synchronized and volatile. Those rules define when shared objects and
their contents are visible to threads other than the currently executing thread.

You can take advantage of these Java language characteristics when data contained in a data structure does change by keeping two separate instances of the data
structure. Once one is populated, it doesn't change again. It is effectively immutable. If the get and put operations were allowed to execute simultaneously on the
same data structure it would be dangerous. The technique we describe here ensures that all puts complete before any get can execute.

The technique

The sample code in Listing 1 illustrates the technique:

Listing 1. Producer/consumer code that avoids queuing points

Applicability to class pairs
Hashtable is one of a number of Java classes that provide
access to data shared by multiple threads. HashMap is
similar in function to Hashtable but it is not thread safe.
The technique presented here is applicable to other pairs of
classes that are similar to each other, except that one class
has synchronized accessor methods and the other doesn't.
For example, Vector has synchronized accessors, and
ArrayList doesn't. Both provide a similar function and can
use the approach described here.

static volatile Map currentMap = new HashMap(); // this must be volatile to ensure
 // consumers will see updated values
static Object lockbox = new Object();

public static void buildNewMap() { // This is called by the producer
 // when the data needs to be updated.

 synchronized (lockbox) { // This must be synchronized because
 // of the Java memory model.

 Map newMap = new HashMap(currentMap); // For cases where new data is based on
 // the existing values, you can use the
 // currentMap as a starting point.

Page 2 of 6Combine safe publication and effective immutability to improve performance

9/27/2007http://dw.raleigh.ibm.com/developerworks/library/library-html/j-hashmap.html

Here's what happening in Listing 1:

A second variable — called newMap in Listing 1 — holds the HashMap that is being populated with data. This variable, protected by a synchronized
block, is used by just one thread at a time — a producer thread whose job is to:

Create a new HashMap and store it in the newMap variable.
Perform a complete set of put operations on newMap such that all data that is needed by the consumer threads are in newMap.
When newMap is completely populated, assign the value of the newMap to currentMap.

The producer thread can be executed periodically, as a result of a timer, or it can be a listener that's awakened when some external data, such as a database,
has changed.

Consumer threads that need to consume the contents of currentMap simply access the object and perform get operations. Note that the m =
currentMap assignment is a unit operation and does not need to be synchronized, even though other threads might be accessing the object's value. This is
safe because currentMap is volatile and is populated inside the producer's synchronized block. That means that the contents of the data structure read
through the currentMap reference will be at least as up-to-date as the currentMap reference itself.

 // add or remove any new or changed items to the newMap
 newMap.put(....);
 newMap.put(....);

 currentMap = newMap;

 }
/* After the above synchronization block, everything that is in the HashMap is
 visible outside this thread. The updated set of values is available to
 the consumer threads.

 As long as assignment operation can complete without being interrupted
 and is guaranteed to be written to shared memory and the consumer can
 live with the out of date information temporarily, this should work fine. */

}
public static Object getFromCurrentMap(Object key) { // Called by consumer threads.

 Map m = currentMap; // No locking around this is required.

 Object result = m.get(key); // get on a HashMap is not synchronized.

 // Do any additional processing needed using the result.

 return(result);

}

Page 3 of 6Combine safe publication and effective immutability to improve performance

9/27/2007http://dw.raleigh.ibm.com/developerworks/library/library-html/j-hashmap.html

Discussion

Once the newMap has been assigned to currentMap, the contents never change. Effectively, the HashMap is immutable. This allows multiple get operations to
run in parallel, which can be a major performance boost. According to Brian Goetz in section 3.5.4 of Java Concurrency in Practice (see Resources), "safely
published effectively immutable objects can be used without additional synchronization." The safe publication is a result of the volatile reference.

The only thing that might change while the data is being read is the object reference to the currentMap variable. The producer might overwrite the current value
with a new value at the same time the consumer threads access the value. Because object references are unit operations in the Java language, the consumer does
not need to synchronize when accessing that object. The worst that could happen is the consumer gets a reference to currentMap, then the producer overwrites
that reference with newer contents. In that case, the consumer thread uses data that is slightly out of date but is still internally consistent. The same result would
occur if the consumer thread had executed a second before the producer thread was ready to run. Typically, this should not cause any problems. The key is that
currentMap's contents are always fully self-consistent and immutable when they are published.

When this race does occur, the consumer threads could have a reference to the "old" version of the data. The "new" object reference has overwritten the old one,
but some consumers still have a reference to the old one. When the last consumer finishes referencing the old object, the object goes out of scope and is eligible
for garbage collection. The Java runtime keeps track of when that occurs. The application does not need to free the old object explicitly because it happens
automatically.

A new version of currentMap might be created periodically based on the application's needs. By following the steps we've outlined above, you can ensure that
those updates occur safely and repeatedly.

The synchronized block in Listing 1 is required to guarantee that the two producer threads don't race to update currentMap at the same time. That could cause
data loss, which could lead to consumer threads seeing indeterminate results. The synchronized precludes the optimizer from making such decisions, essentially
causing the entire map creation to be treated as an atomic operation. The volatile keyword guarantees that consumer threads do not continue to see an old value
of the currentMap variable after it has been modified. Even more important, it guarantees that any values a client reaches by dereferencing through the object
reference are at least as up-to-date as the reference itself. An ordinary reference would not provide this ordering guarantee.

The net effect of the use of a synchronized block and volatile keyword is to ensure that the consumer threads see a consistent view. The producer is aided by
the fact that the data structure is not modified after publication. In this case — publishing an effectively immutable object graph — all that is required is to publish
the root object reference safely. Note that you could also synchronize the consumer's access to the root reference, but that would be a possible queuing point,
which is what this technique is trying to avoid. Brian Goetz refers to this approach as the "cheap read-write lock" trick (see Resources).

Conclusion

This article's technique is applicable to any situation where shared data changes infrequently and is accessed simultaneously by multiple threads of execution. It

Page 4 of 6Combine safe publication and effective immutability to improve performance

9/27/2007http://dw.raleigh.ibm.com/developerworks/library/library-html/j-hashmap.html

applies only to situations in which having the absolute latest data is not a requirement of the application.

The end result is concurrent access to shared data that can change over time. In environments where high concurrency is required, this technique lets you avoid
having unnecessary queuing points within the application.

It's important to note that because of the intricacies of the Java memory model, the technique described here works only in Java 5.0 and later. In earlier Java
versions, the client application is at risk of viewing an incompletely populated HashMap, or a corrupted, invalid, or inconsistent view of internal data structures of
the HashMap.

Acknowledgment

The authors would like to thank Brian Goetz for his technical reviews and suggestions to make this article complete, precise, and accurate.

Resources

Learn
"Double-checked locking: Clever, but broken" (Brian Goetz, JavaWorld.com, February 2001): Read about some
synchronization gotchas.

Java Concurrency in Practice (Brian, Goetz, Addison-Wesley, May 2006): Chapter 16 of Java Concurrency in Practice
explains the Java memory model.

"Java theory and practice: Managing volatility" (Brian Goetz, developerWorks, June 2007): Some patterns for using volatile variables correctly.

Browse the technology bookstore for books on these and other technical topics.

developerWorks Java technology zone: Hundreds of articles about every aspect of Java programming.

Discuss

Check out developerWorks blogs and get involved in the developerWorks community.

About the authors

Share this...

Digg this story

Post to del.icio.us

Slashdot it!

Andy Citron works in the WebSphere Portal performance group in Research Triangle Park, NC. His 30-year career with IBM has included stints
creating products such as the Mwave Multimedia Card and its telephone-answering and call-discrimination subsystem, word processors, operating

Page 5 of 6Combine safe publication and effective immutability to improve performance

9/27/2007http://dw.raleigh.ibm.com/developerworks/library/library-html/j-hashmap.html

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Other company, product, or service names
may be trademarks or service marks of others.

systems, and wireless Internet access. In the late 1980s, Andy was lead architect for the SNA communication protocol known as APPC (or LU6.2). His
work in the SNA architecture group led to a number of patents in the area of distributed two-phase commit processing.

Chris Seekamp is a programming consultant in the Workplace, Portal, and Collaboration Software division of the IBM Software Group. He has worked
on various products, including Lotus Sametime, Lotus Connections, WebSphere Portal, and WebSphere Transcoding Publisher. He has been applying
object-oriented design and development techniques for over 15 years, first in C++ and then in the Java language. He also has a strong interest in Linux
and open source software.

Martin Presler-Marshall is a senior programmer at IBM's Research Triangle Park, NC site. He has been involved with Web-related software since
1995, starting as a developer on IBM's first HTTP server product. He is currently working as a performance expert in the WPLC performance team in
IBM's Lotus division. His main focus areas there are improving the performance of IBM WebSphere Portal and IBM Lotus Quickr. He is co-author of
several W3C recommendations and technical reports, such as the P3P specification. He has worked for IBM since 1991. When not working, he enjoys
camping, bicycling, woodturning, and the martial art of tae kwon do.

Page 6 of 6Combine safe publication and effective immutability to improve performance

9/27/2007http://dw.raleigh.ibm.com/developerworks/library/library-html/j-hashmap.html

